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Abstract

Local network externalities are present when the utility of buying from a firm not only
depends on the number of other customers (global network externalities), but also on their
identity and / or characteristics. We explore the consequences of local network externalities
within a framework where two firms compete by offering differentiated products. We first show
that under weak restrictions, an equilibrium exists and is unique. Second, the equilibrium
allocation gives an ineffi cient allocation of customers on the two networks. Third, if network
externalities are local, their downward pressure on prices is dampened or eliminated. Finally,
local network externalities create a difference between the marginal and the average consumer,
which gives rise to ineffi ciently high usage prices and too high levels of compatibility between
the networks.
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1 Introduction

Network externalities are present when a user’s utility from consumption of a good depends on the

set of other users consuming the good. In the economics literature on network externalities, Rohlfs

(1974), Katz and Shapiro (1985), Arthur (1989), Farrell and Saloner (1985, 1986), and Katz and

Shapiro (1992), network externalities are primarily captured by the unidimensional variable size.

In reality the composition of the network may also matter. Consumers may have preferences for

the type (or identity) of the consumers in a network as well as their numbers, referred to as local

network externalities. Examples of local network externalities abound.

The identity of consumers is important in traditonal network industries, such as telecommunica-

tions, when service compatibility is imperfect. Some telecommunication firms (particularly mobile
∗The paper is part of a project financed by the Norwegian Competition Authority. We would like to thank

Øystein Fjeldstad for invaluabale discussions and comments. We also highly appreciate comments from Michael
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phone operators) set different on- and off-net prices. As a result, consumers prefer to subscribe to

the same service as the people with whom they communicate. There is a similar effect that can be

seen in the choice between platform providers. It is convenient to use the same system as colleagues

and business partners. In addition, increasing returns to scale in providing applications imply that

the availability of applications for a platform will depend on the preferences of its adopters, and

hence consumers will tend to choose a platform where the preferences of other consumers match

their own.

Other examples are found in the financial services industry, i.e. credit cards and other banking

services. When choosing a credit card, the trading habits of other customers matter because they

influence vendor acceptance of cards. In banking, direct and indirect transaction costs may be lower

if trading partners use the same bank. In addition, a bank’s customer base is a source of information

that can benefit customers within the bank’s area of specialization (Fjeldstad and Sasson 2010).

The examples do not stop with the traditional network industries. For consumption goods or

services that involve social interaction, consumers generally have preferences regarding the identity

of other customers. Obvious examples are clubs and social networking sites. For schools and uni-

versities, other customers (students) form a pool both for social interaction and a basis for a future

professional network. There may be similar effects in employment decisions if the attractiveness of

an employer is a function of the set of current employees.

In the present paper we analyze competition in the presence of local network externalities. In

our model two firms supply horizontally differentiated products. As in the standard model, agents

have preferences over product varieties, referred to as their technological preference. In addition

they have preferences over the size and composition of the customer base of the firms. This is

modeled by attributing to each consumer a "social location" on a circle, and letting consumers

have a preference for using the same service as consumers to whom they are closely located on

the circle. Finally, social location and technological preferences are assumed to be (imperfectly)

correlated. An agent’s choice of supplier depends on the other agents’choices, and the equilibrium

is defined as a fixed point of a mapping from the other agents’choice of network to an individual’s

choice of network (loosely speaking). Local network effects emerge when both 1) consumers prefer

to be in the same network as those who are close to them socially, and 2) the social locations and

technological preferenes of individuals are correlated.
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If the application at hand relates to membership in clubs, social location reflects status and foci.

If it relates to the choice of platform, e.g. Apple or Windows based computers, the social location

will be influenced by occupation and education. If the application at hand relates to banking, social

location may reflect industry and business niche, while in mobile telephony it may be related to

friends and family. Regarding computer platforms, (Apple, Windows), the technological solutions

of the respective platforms may be better suited for some professional tasks than others, and thus

be preferred by members of certain professions. People with whom one prefers to co-affi liate may

have similar interests as oneself regarding curricula (schools), activities (clubs), and calling plans

(e.g. different relative pricing of messaging and voice in mobile phone services). Hence the degree

of correlation between social location and technological preferences may vary between applications.

Our paper delivers several contributions to the literature on network externalities. The first

is methodological. We propose a model of competition with local network externalities. We show

that under weak restrictions, equibrium exists. If the social preferences are not too strong relative

to the technological preferences, we find that the equilibrium mapping is a contraction mapping,

with a unique fixed point.

Our second contribution regards the welfare properties of the equilibrium allocation. We show

that allocation is not socially optimal, as what we refer to as a composition ineffi ciency arises.

Compared with the planner’s solution, consumers put too much emphasis on their technological

preferences and too little emphasis on their social preferences when chosing between the networks.

A third contribution regards the effects of local network externalities on competition intensity.

It is a celebrated finding that network externalities may stiffen competition between firms (Gilbert

1992, Farrell and Saloner 1992, Foros and Hansen 2001, Laffont et al. 1998, Shy 2001), as network

externalities increase the elasticity of the demand function. By varying the degree of correlation

between technological preferences and social location, we explore how this result changes when

the network externalities become more "local". We find that this tends to dampen the down-

ward pressure of network effects on prices. The reason is that when technological preferenes and

social location becomes more correlated, there are fewer marginal customers, and this weakens

competition.

Finally, we show that local network externalities create a new source of divergence in the intersts

of the average and marginal consumers. When technological preferences and social locations are
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correlated, inframarginal consumers are on average socially closer to the other consumers in the

network than is a marginal consumer. As expected, this gives rise to distortions. For instance,

if firms invest in enhanced one-way compatibility, firms will over-invest, because marginal agents

have stronger social ties to the customers in the other network than do average customers.If firms

use two-part tarrifs for connection and usage, then they will set usage prices above marginal costs.

These distortions exacerbates the composition ineffi ciency described above.

The outline of the paper is as follows: First we give a short literature review. In section 3 we

then formalize local network externalities. In section 4 we derive the aggregate demand structure

with network externalities. This is not trivial, and we find it convenient first to analyze the demand

facing a single platform. In section 5 we introduce competition and derive equilibrium conditions.

The effi ciency properties of the equilibrium allocation is derived in section 6. In section 7 we analyze

how equilibrium depends on the degree of correlation between technological preferences and social

locations, while we study distortions created by endogenous consumer heterogeneities in section 8.

Section 9 concludes. Proof are relegated to the appendix.

2 Related literature

Some of the seminal contributors to research on network externalities were aware that network

externalities need not be spillovers. Rolphs (1974) points out that there may be "communities

of interest groups" where the members care mostly about the behavior of the other members

in the group. Farrel and Klemperer (2007) note that "a more general formulation (of network

externalities) would allow each user i to gain more from the presence of one other user j than of

another k", and refers to this as local network externalities without pursuing it further. Swann

(2002) assumes that different groups differ in diffusion rates and communication patterns, and on

this basis shows that network effects will hardly be linear in the size of the network. A more

recent related paper is Hoernig et.al. (2011) study competition with non-uniform calling patterns

within telecommunication. Evans and Schmalensee (2010) allows individuals to differ regarding the

intensity of their preference for the size of the network.

There exists a related literature on complex social networks, see Vega-Redondo (2007) for an

overview. A much applied framework in this literature is the Watts-Strogatz (1998) model of

diverse social networks. In this model, consumers are allocated on a circle. A single parameter
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beta indicates whether the links to other agents tend to be to the closest located agents or to agents

randomly drawn from the network, i.e., how clustered the network is. This way of modelling social

networks has similiarities with our model of local network externalities, as it allows for the network

effects to be stronger on average the closer are the agents on the social circle. However, our model

is much simpler, and gives rise to equilibria with closed-form solutions, hwile the Watts-Strogatz

model requires simulations.

Lee et al (2007) use the Watts-Strogatz model to analyze whether competition between two

agents eventually will lead to monopoly. By using simulations they find that monopoly is more

likely in the long run the less clustered is the network. Jeho et al (2015) use the same model to

study the importance of an incumbency advantage. They find that the incumbency advantage is big

if the degree of clustering is low. In these two papers, the firms pricing decisions are not modelled

(pricing is absent), and the analysis is therefore very different from ours.

Our paper is also related to the literature on two-sided (or multi-sided) markets, see see Rochet

and Tirole (2003, 2006) and Hagiu and Spulber (2017). In fact, if each point on the social circlle is

interpreted as a side, the model can be represent a market with a continuum of sides. However, we

do not allow sellers to make prices contingent prices social location, which is an abstract concept

(althogh some observables, like geografic location may serve as proxies). Hence our model clasifies

as a network model and not a multi-sided model according to Weyl (2010). Introducing location-

specific prices is on our agenda for future work.

Weyl (2010) allows for multi-dimensional heterogeneity among agents, and the attractiveness of

the platform depends on customers characteristics as well as the participation from the other sides

of the market. Our model differs from Weyl’s in several ways. Most importantly, we do not allow

prices to be "insulating", meaning that they are contingent on the number of agents of other types

that enter the market. This is crucial for our welfare result. Second, we explicitely focus on the

relationship between social location and social closeness between agents, and how social locations

and and technological preferences are correlated. Similar results are not found in Weyl’s paper.

Finally, we allow for a continuum of social locations, and our proof of existence of equilibrium thus

constitutes a methodological contribution absent in Weyl.

In the literature on two-sided markets, it is known that cross-over effects between the sides may

influence prices. Chandra and A. Collard-Wexler (2009) shows that mergers of multisided firms may

5



reduce prices. Armstrong (2006) show that if the agents on side 2 of the market obtains utility from

having more agents entering from side on of the market, this will cet par lead to lower prices on side

1 of the market. In our paper, the platform cannot discriminate between the different customers.

Furthermore, none of these papers have analyzed the effects of the degree of correlation between

technological preferences and social location, i.e., the degree of "localness" influences incentives to

undertake compatibility-enhancing investmens as well as the optimal price structure. More local

network effects lead to fewer marginal customers, this effect is absent in Armstrong (2006) and the

other papers we know of.

It is known from the literature that differences in the characeristics of marginal and average

differences may distort the allocation of resources. This was first demonstrated by Spence (1974)

with several follow-ups in different economic settings. Hoering et. al. (2011) study distortions

created by calling circles. Weyl (2011) study how marginal customers may differ from average

customers with two-sided hetrogeneity, in which agents differ both in their overall willingness to

pay to enter a market as such and their weight on size of the customer pool on the other side. This

two-sided hetrogeneity implies that the marginal customers are less concerned with size effects

than the average customer, and this leads to distortions in the pricing decisions. In our model,

by contrast, all agents have the same intensity of social preferences or size (although they differn

regarding their preferences for the identitiy of the other customers). However, the degree of

"localness" influences to what extent the custonmers care for compatibility with the agents in the

other network.

There is ample empirical evidence that local network externalities are important. Birke and

Swann (2005) study individual consumers’choice of mobile operators in the U.K. They find that

individual choices are heavily influenced by the choices of others in the same household. Tucker

(2008) analyzes the introduction of video-messaging technology in an investment bank. She finds

that adoption by either managers or workers in boundary spanner positions has a large impact on

the adoption decisions of employees who wish to communicate with them. Adoption by ordinary

workers has a negligible impact. Corrocher and Zirulia (2009) survey Italian students’choice of

mobile operator and find that local network effects (the choice made by friends and family members)

play an important role, although the strength of the effects is heterogeneous.
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3 Modelling local network externalities

Althoug our aim is to study competition, it is convenient to start by studying the demand facing

a single network / platform (the terms network, platform and firm will be used interchangeably)

that offers a set of consumers /customers/agents access to a network (the terms will be used

interchaneably). The extension to oligopoly then follows straightforwardly.

The value of being connected to the network depends on an agent’s intrinsic valuation of the

network services, as well as the number and the identity of the other agents that connect to the

network. We refer to the first as a consumer’s technological preferences, and the second to the cus-

tomers social preferences. The consumers /consumers /agents (we use the terms interchangeably)

are hetrogenous along both dimensions. The consumers’intrinsic preferences for the network are

represented by the parameter y, which is continuously distributed over the consumers. The para-

meter y represents the "travel cost" of the agent. A higher value of y thus indicates that everything

else equal, the agent likes the network less.

An innovation in this paper is that we introduce social preferences. Consumers’social prefer-

ences are represented by a Salop circle, with circumference equal to one.1 Each consumer has a

social location (or just location) on this circle. When specifying the agents’location on the circle,

we find it convenient to specify whether the agent is on the east or the west hemisphere (although

in the proofs in the appendix we use different notations). To be more precise, denote agent i’s

social location by zki , where k = E,W indicates the east and west hemisphere. We denote by Ω

the full circle, and Ωk the k-hemisphere, where k is either east or west. We refer to −1/4 as the

south pole and 1/4 as the north pole.

1The motivation behind letting agents be distributed on the circle is to avoid the asymmetry associated with
consumers on the end of a line that only communicate in one direction.
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Figure 1

Let d denote the distance between two locations on Ω - referred to as social distance. The distance

between two agents located on the same hemisphere is

d(zki , z
k
j ) = |zki − zkj |

The distance between two agents located on opposite hemispheres (k and kc respectively) is

d(zki , z
kc

j ) = min

[
1

2
− zki − zk

c

j ,
1

2
+ zki + zk

c

j

]
By symmetry, the western hemisphere is a perfect mirror image of the eastern. Therefore, for

notational convenience we suppress the topscript k when this does not lead to confusion.

A driving assumption in our analysis is that social and technological preferences may be related.

We assume that people who are socially close are more likely to share the same technological

preferences. Let F z(y) ≡ F (y|z) with support given by [ymin(z), ymax(z)] denote the conditional

distribution of y among the buyers with social location z (note that the distribution is the same at

the eastern and the western hemisphere).

We assume that F z(y) is continuously distributed with density fz(y), and that there exists an

upper bound fmax such that fz(y) ≤ fmax for all z, y. We also assume that ∂F z/∂z is well defined,

and that |∂F z(y)/∂z| has an upper bound denoted by fz, i.e., that |∂F z(y)/∂z| ≤ fz for all z, y.

Let the continous function g : [0, 1] → R+ denote agent i’s utility of having an agent at social

distance d in the network. Unless stated otherewise we assume that g is strictly decreasing in

d, reflecting that agents gain more from "being together" with people that are socially close than
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socially distant. Hence the network externalities are local in the sense that they are stronger

between the closer the agents are located in social space.

A negative g is not allowed. Hence there are no crowding-out effects of membership. This seems

to be a reasonable assumption for platforms, banks, and telephony, but may be less so for social

clubs, where the average member "type" may matter. Note also that this additivity property gives

rise to increasing returns to scale on the demand side. Suppose a fraction H̃(z) of the agents of

social location z belongs to the network (or, alternatively, the probability that a person located at z

chooses the network).2 Below we refer, somewhat impreciciely, to H̃ as the distribution of customers

on the network, or just the distribution function. The social utility of joining the network for this

person is ∫
Ω
g(d(z, zi))H̃(z)dz.

For notational simplicity, the subscript Ω is dropped in all integrals from now on. Finally, define g

as

g ≡
∫
g(d(z, zi))dz (1)

where g denotes the social utility a consumer obtains if all agents in the economy join the network.

If g(d) = g for all d, we say that the network effects are global. We say that g2 is more concentrated

than than g1 if g1 can be constructed by performing a mean-perserving spread of g2, i.e, by decreas-

ing g2(d) for low values of d and increasing g2(d) for high values of d in such a way that g stays

constant. If g2 is more concentrated than than g1 we say that g2 represents more local network

externalities than g1, or simply that the network externlites are more local. We also consider the

limit, in which g(0) goes to infinity and g(d) goes to zero for all d > 0, keeping g constant. We

refer to this limit as a situation with pure local network externalities.

Occasionally we refer to g as an individual’s total number (measure) of "friends". The value

of being in the same network as a friend is then normalized to 1. With this interpretation, may

be interpreted as the probability density that a person has a friend (or the number of friends) at

distance d.
2At this point our model allows for two different interpretations. Either there may be one person located at each

z, in which case H(z) is a probability. Or it may be a continuum of agents with measure 1 at each z, in which case
H(z) is a fraction. We will use the two interpretations interchangeably.
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4 Demand

Suppose the platform sets a price p of entering the network, and that the agents independently

decide whether to join the network, given the prices and given rational expectations about the

choice of the other agents in the economy.3 The utility of an agent with characteristics (yi, zi)

joining the network at price p, is given by

u(yi, zi) = β +

∫
g(d(z, zi))H(z)dz − yi − p (2)

where β is a given strictly positive parameter. The payoff obtained by not joining the network is

normalized to zero.

Let H0(z), 0 ≤ H0(z) ≤ 1 be an arbitrary continuous distribution function. Let ym(zi;H0)

denote the technological preference of the indifferent agent at location zi. If all agents at zi prefer to

join the network, let ym(zi;H0) = ymax(zi). If no agent prefers to join the network, let ym(zi;H0) =

ymin(zi). Otherwise, ym(zi : H0) is defined by the equation u(ym(zi;H0), zi) = 0, i.e., by the

equation

ym(zi;H0) = β +

∫
g(d(z, zi))H0(z)dz − p. (3)

Define H1(zi) as the fraction of agents at social location zi that joins the platform, as a function

of the distribution function H0, we write H1(zi) = ΓH0. By definition, H1(zi) = F (ym(zi;H0)).

If ym(zi;H0) = ymin(zi) , then H1(zi) = ΓH0(zi) = 0. If ym(zi;H0) = ymax(zi), then H1(zi) =

ΓH0(zi) = 1. Otherwise,4

ΓH0(zi) = F z
(∫

g(d(z, zi))H0(z)dz + β − p
)
. (4)

Since the integral of a continuous function is continuous, it follows that ΓH0(zi) is continuous in

zi. For a given price p the equilibrium distribution function H(z) is a fixed-point satisfying

H = ΓH.

In the appendix we show that Γ is equicontinuous on its domain, and hence that Schauder’s

fixed-point theorem applies:

3For a discussion of expectations formation in markets with network externalities, see Griva and Vettas (2011).
4Note that since F z(y) = 0 for all y ≤ ymin, and F z(y) = 1 for all y ≥ ymax, (4) defines Γ for all H0 and all zi.
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Proposition 1 For any given price p, Γ has a fixed point, hence an equilibrium distribution func-

tion exists.

Proposition 1 ensures existence of an equilibrium distribution, but not uniqueness. In order to

show uniqueness, we have to impose further parameter restrictions. More specifically, we require

that g < 1/fmax. In the appendix we show that Γ is a contraction under the sup norm on a

complete matrix space. Hence it follows from the Banach fixed point theorem (the contraction

mapping theorem) that Γ has a unique fixed point.5

Proposition 2 Suppose g < 1/fmax. Then for any given price p, the fixed point H = ΓH exists

and is unique.

Proof. See appendix

To gain intuition, suppose as an example that F z is uniform with density f < 1/g, and that all

types increase their threshold value ym(z) with ∆ units (from now on we supress the dependence

of ym on H0). This increases H with f∆ units. The increased utility of joining network H due to

network externalities is thus fg∆. The increased cost for the marginal agent however is ∆, which

is greater than fg∆ by assumption. Hence demand is stable in the flollowing sense: an increase

in the number of agents that choose to connect to the network increases the attractiveness of the

network, but not suffi ciently much to compensate for the loss associated with the increased value

of y for the new agents.

Let Γn denote the mapping that emerges when Γ is applied n times. Since Γ is a contraction,

we know that for any distribution function H0, the fixed-point H is uniquely defined as H =

limn→∞ ΓnH0.

5 Competition

Suppose now that there are two platforms A and B that offer services, so that the alternative may

be to join the other platform. Furthermore, we assume that the market is covered. Hence at any

z, we let H(z) denote the fraction of the customers who join network A, and 1−H(z) the fraction

5Above we have defined Γ on the set of continuous functions. One may ask whether Γ may have another fixed-point
H̃ that is not a continuous function. However, for any integrable function H̃, ΓH̃ is continuous. Hence Γ does not
have a non-continuos (integrable) fixed point.
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that joins network B. We assume that the social value of joining the two platforms have the

same structure, and equal to gA(zi) =
∫
g(d(z, zi))H(z)dz and gB(zi) =

∫
g(d(z, zi)) (1−H(z)) dz,

respectively. Since the market is covered it follows that gA(zi) + gB(zi) = g. We redefine y to be

an agent’s technological preference for the B-platform over the A-platform. An agent located at

zi obtains utilities of joining network A and network B equal to uA = β + gA(zi) − y − pA and

uB = β + gB(zi)− pB, respectively, and choses network A whenever

y ≤ gA(zi)− gB(zi) + pB − pA

= 2gA(zi)− g + pB − pA.

since gA(zi) + gB(zi) = g .

Let ym(zi) denote the technological preference of the indifferent customer with social location

zi. It follows that ym(zi) = gA(zi)− gB(zi) + pB − pA (if all /no agents in the support prefer the

A network, then ym(zi) is equal to ymax(zi) or ymin(zi), respectively). As above, the distribution

H is given as fix-point to a mapping of the form H1(z) = ΓH0(z). Since H(zi) = F z(ym(zi)), we

have that H is the solution to the fix-point

ΓH(zi) = F z(2

∫
g(d(z, zi))H(z)dz − g + pB − pA). (5)

The mapping is analogous to the equilibrium mapping (4). The factor 2 reflects that the alternative

now is the value associated with joining the B-network, where the complementary part of the

customers are located. The formal structure of the mapping is the same as above, with β − p

replaced by −g + pB − pA and g by 2g. Hence it follows that the mapping is a contraction if

2fmaxg < 1.

Corollary 1 Suppose 2fmaxg < 1. Then the equilibrium distribution H(zi) defined by (5) has a

unique solution.

Let NA and NB denote the total number of agents in network A and B, respectively. Then

NA(pB − pA) =

∫
H(z; pB − pA)dz

NB(pB − pA) =

∫
[1−H(z; pB − pA)] dz = 1−NA(pB − pA)
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In the appendix we show that Ni(pB − pA) is continuous in pB − pA. The profit of firm A and B

can be written

πA = (pA − c)NA(pB − pA)

πB = (pB − c) [1−NA(pB − pA)]

with first order conditions for maximum given by

NA(pB − pA)− (pA − c)N ′A(pB − pA) = 0 (6)

1−NA(pB − pA)− (pB − c)N ′A(pB − pA) = 0 (7)

Proposition 3 With identical costs, in a pure strategy equilibrium, the solution is uniquely deter-

mined by the two equations given by

pA = pB = c+
1

2N ′A(0)
. (8)

The second order condition for firm A reads

−2(pB − pA)N ′A(pB − pA) + (pA − c)N ′′A(pB − pA) < 0 (9)

The second order condition for firm B is defined analogously. Due to symmetry, NA(·) is odd, and

thus has an inflection point at zero. Hence N ′′A(0) = 0, and the second order conditions are satisfied

locally.

To show that the equilibrium is the unique equilibrium in pure strategies, from (6) and (7)

it follows that NA
NB

= pA−c
pB−c . As the right hand side is incrasing in pA, and the left hand side is

decreasing in pA, it follows that the symmetric solution is the unique pure strategy equilibrium.

As an example, suppose F z(y) = F (y − az), and that F is uniform with density f . Hence the

support of y(z) is given by [az − 1/f, az + 1/f ]. If 0 < H(z) < 1 for all z, we have that

N ′A(·) =
f

1− 2fg

Since N ′A(·) is a fixed number, N ′′A(·) = 0, and the second order condition for the pure strategy

equilibrium holds globally.6 Hence the equilibrium price is

p = c+
1

2f
− g. (10)

6 It is straight forward to show that N ′′A(·) ≤ 0 if, in equilibrium, H(z) equals 1 or 0 for some z.
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When the demand functions are suffi ciently non-linear, it is well known that competition between

firms with differentiated products may not have pure strategy equilibria, see e.g. Laffont and Tirole

(1998). In what follows we assume that parameters are such that equilibrium in pure strategies

exists.

6 Equilibrium distributions

In this secition we will derive some properties of the equilibrium distributionH and the equilibrium

mapping Γ at ∆p = 0. In addition to being interesting in its own right, the shape of H has

concequences for equilibrium prices, to be discussed below.

In what follows we make the following assumptions on F z(y):

1. Higher z is associated with higher values of y: If z1 > z0, then F z1 first order stochastically

dominates F z0 .

2. Symmetry around equator (z = 0): y|z and −y| − z are identically distributed.

3. In some applications we also assume that F z(y) = F (y−az) as indicated above. The density

f(y − az) is assumed to be single-peaked at and symmetric around y − az = 0

When requirement 3 is imposed, we will, somewhat imprecicly, refer to a as the degree of

correlation between social location and technological preferences. If a = 0, the two are

independent.

Let D denote the set of distribution functions H : [−1/4, 1/4]→ [0, 1] satisfying 1)-3). We say

that a distribution function H1 ∈ D is more concentrated than a distribution function H0 ∈ D if

H1(zi) ≥ H0(zi) for all zi < 0, with strict inequality if H0(zi) < 1, and H1(zi) ≤ H0(zi) for all

zi > 0, with strict inequality if H0(zi) > 0.

We know ex ante that the equilibrium distribution functions are 1) continuous, 2) antisymmetric

around (z = 0, H = 1/2), i.e., such that H(zi)+H(−zi) = 1. The determinants of the concentration

of H(z) is key for our analysis, and for this purpose the following lemma is convenient:

Lemma 1 Suppose H0 ∈ D. Let H1 = ΓH 0. Then H1 ∈ D. Furthermore, suppose H1 is more

concentrated than H0. Then H2 = ΓH1 is more concentrated than H1.
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From the definition of Γ and symmetry, H1 = ΓH0 satisfies requirement 1) and 2). The rest of

the lemma is proved in the appendix.

The lemma is very helpful, as it implies that when analysing the effects of a shift in a para-

meter on the concentration of the equilibrium distribution, it is suffi cient to study the "first-round

effect" of a shift. To be more specific, suppose Γ1 and Γ2 are two mappings, and H1 and H2 the

corresponding equilibrium distributions. Recall that H2 = limn→∞ Γn2H0. Then if follows from the

lemma that if Γ2H1 is more consentrated than H1, then H2 is more concentrated than H1.

Suppose for instance that H0(zi) ≡ 1/2. Then H1 = Γ(H0) = F z(
∫

2g(d(z, zi)dz − g) =F z(0).

Due to the stochasatic dominance assumption, it follows directly that H1 is more concentrated

that H0 (if F z(y) = F (y−az), it follows that H1(z) = F (−az). The first part of the next corrolary

follows directly, the second part is proved in the appendix.

Lemma 2 Suppose requirement 1-2 are satisfied. The the equilibrium distribution H(z) is decreas-

ing in z, and strictly decreasing whenever H ∈ (0, 1). If requirement 3 is also satisfied,then H(z)

is concave for z < 0 and convex for z > 0.

If social preferences and technological preferences are independent, then in equilibrium H(zi)

is constant for all zi. Any agent has a fixed proportion of her friends in the network. If social

and technological preferences are correlated, the pattern in the figure appears. The equilibrium

function H(z) satisfies requirements 1)-3) stated above.

Figure 2

Due to technological preferences, agents close to the south pole are more likely to join the A
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network. The social preferences reinforce this and creates a multiplier effect: when more agents

enter the A network, it is more attractive to enter the network for other customers, and particularly

so for agents that have a close social location. This effect increases as zi moves towards −1/4 (closer

to south pole), but at a decreasing rate (given that requirement 3 is satisfied). The existence of

social preferences increases H and gives it a concave shape at the southern hemisphare, while it

decreases it and gives it a convex shape at the northern hemsphare.

A main concern is how the concentration of H depends on the network effects, both their

overall importance (measured by g) and the extent to which they are local (the concentration of g).

We first analyze the effects of an increase in overall importance. To this end, define g(z) ≡ kḡ(z),

where k is a shifter. We say that networ effects become more important if k increases. Then the

follwing holds

Lemma 3 a) An increase in k, the importance of network effects, makes H(z) more concentrated.

The proof is given in the appendix. An informal description of the proof goes as follows:

Consider two values of k, kh and kl. If we plug the equilibrium distribution for k = kl into the

equilibrium mapping for k = kh, it follows that more customers will join the network for z < 0

and fewer for z > 0, since network effects have been more important relative to technological

preferences. Hence the new distribution is more concentrated than the equilibrium distribution for

k = kl. Now we can apply the equilibrium mapping for k = kh repeatedly, and in the limit obtain

the equilibrium distribution for kh, and lemma 3 ensures that the first-round effect "survives" and

that the equilibrium distribution for k = kh is more concentrated than the equilibrium distribution

function for k = kl.

To gain (more) intution, note that customers below z = 0 have a tendency to prefer the A

network for technical reasons (low y), while the opposite is true for z > 0. This is reinforced by

the network externalities, the customers below z = 0 prefer to be in the same network as other

customers at z < 0, while the opposite holds for z > 0. An increase in k increases these network

effects, and locates even more z < 0-customers and even less z > 0- customers to A.

The next important observation regards the role of the correlation between social and technical

preferences, captured by the parameter a. The following holds:
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Lemma 4 If a = 0, H(z) = 1/2 for all z. An increase in a makes H(z) more concentrated.

An increase in a strengthens the tendency for customers at z < 0 to perfer the A network and

for customers at z > 0 to prefer the competitior. The "first-round" effect of an increased a is

therefore to shift H up (down) for z below (above) 0. The first round effect is then fortified by the

multiplier effect caused by the network externalities. In the extreme case with a = 0, location does

not influence the choice of platform, and hence there is no initial distributional effect that can be

reinforced by network effects. Hence H(z) is flat and equal to 1/2 for all z.

Finally we consider how the concentration of g influences the concentration of H. In the

appendix we show the following:

Lemma 5 Suppose assumptions 1)-3) are satisfied. Suppose g2 is more concentrated than g1. Let

H1 and H2 represent the associated equilibrium distribution functions. Then H2 is steeper than H1.

This result follows from our finding that H(z) is concave, see lemma 2. The result is rather

intuitive at the poles. Recall that H(z) is high around and highest at z = −1/4, and is decreasing

as z increases. Hence the more concentrated g is, the higher is the fraction of friends a person at

z = −1/4 has in the A-network, and the more attractiv it is for this person to join the A-network.

The same effects are at play for any z < 0, while the opposite is true for z > 0, here it is the

B-network that is advantaged by a more concentrated g.

It follows that the most concentrated H-distribution is obtained in the limit when the network

effects are pure local. In this case, all the friends of the person are located at the same social

location as himself. It follows that
∫
H(z)g(d(z, zi)dz = gH(zi). It follows from (5) that

ym(zi) = g[2F (ym − azi)− 1]

This equation is not particularly easy to solve, except in the not so interesting case in which F is

uniform.7

7Suppose F is uniform, and given by F (y) = 1
2

+ (y − az)× f , where f is a constant. Provided that ym is in the
support of F , it follows that

ym(zi) = − 2gazi
1− 2gfzi
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7 Effi ciency

In this section we analyze the effi ciency properties of equilibrium. First we derive the optimal

distribution of agents over networks, and refer to this as composition effi ciency. At any given social

location zi, a fractionH(zi) of the agents join network A, hence the total (gross) social value created

in network A, VA, is

VA =

∫
gA(zi)H(zi)dzi

Analogously, denote the total social value created in network B by VB . Then

VB =

∫
gB(zi)(1−H(zi))dzi

In the appendix we characterize the allocations of agents on networks that give the highest and

the lowest total social value, given that the two networks are equally large. The total social value

is minimized if H(z) = 0.5 for all z, in which case each agent can communicate with exactly half of

her friends. The social value is maximized if H(z) equals 1 on an interval with measure 1/2, and

is zero on the complementary interval. However, the allocation that maximizes total social value

implies that some of the agents are allocated to a network with a technology they disfavor. Hence

there is a trade-off between the social benefits of increasing the number of connections and costs

associated with not allocating consumers according to technological preferences.

For a given distribution H(z), let Y (z) denote aggregate technological utility for agents located

at z,

Y (z) = −
ym(z)∫
−∞

yfz(y)dy. (11)

Finally, define Y =
∫
Y (z)dz.

A composition effi cient distribution, denoted by H∗(z), maximizes social welfare defined as

W = VA + VB + Y

=

∫
[gA(z)H(z) + gB(z)(1−H(z)) + Y (z)]dz (12)

In the appendix we show that point-wise maximization gives the following first-order condition:

H∗(zi) = F z
(

2

[
2

∫
g(d(z, zi))H

∗(z)dz − g

])
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Thus H∗(z) is a fixed-point to the mapping Γg given by

ΓgH∗(zi) = F z
(

2

[
2

∫
g(d(z, zi))H

∗(z)dz − g

])
(13)

The planner’s fixed-point is identical with the fixed-point that determines the market solution,

with the exception that the weight on network effects is doubled. From lemma 3 part 1), the next

proposition therefore follows directly

Proposition 4 The equilibrium distribution is not composition effi cient, as the socially optimal

distribution is more concentrated than the equilibrium distribution.

The effi ciency result is intuitive. Recall that the equilibrium distribution when pA = pB is the

fix-point to the mapping (from (4)

ΓH(zi) = F z
(

2

∫
g(d(z, zi))H0(z)dz − g

)
The only difference between the two mappings is that in the mapping that determines the socially

effi cient allocation, twice as much weight is put on social gain. Consumers, when choosing between

suppliers, trade off technological preferences and social gains. However, social gain is matched by

an equally large externality on the other agents in the network. The technological preferences, in

contrast, are carried by the agent in their entirety. This explains why the planner puts twice as

much weight on social value relative to technological preferences as the market.

For zi < 0, H(zi) > 1/2. Thus, the agent located at zi obtains more social value by joining

the A-network than the B-network. For the same reason, the positive externality of joining the A-

network is larger than the positive externality associated with joining the B-network, and it follows

that H∗(zi) > H(zi) on the entire southern hemisphere. The opposite holds on the northern

hemisphere

Put differently, the net externalities associated with increasing H(z) at z = zi in the market

solution H(z) is gA(zi)−gB(zi) where gA(zi) and gB(zi) are evaluated for the equilibrium distribu-

tion H. Again observe that the net externality is positive if the marginal agent at zi has a majority

of friends in the A-network. An agent on the southern hemisphere has more friends connected to

the A-network than the B-network. Hence if she chooses firm A, the net externality is positive.

19



8 Prices

In what follows we want to analyze equilibrium prices. From Proposition 4 we have that the pure

strategy equilibrium satisfy

pA = pB = c+
1

2N ′A(0)
.

Since y has support on [−∞,∞], in equilibrium, 0 < H(z) < 1 for all z, which means there are

marginal agents for all locations z. We have (see appendix for details)

Lemma 6

N ′A(·) =

∫
fz (ym(z))

1− 2gm(z)
dz (14)

where

gm(z) =

∫
g(d(z, zi))f

z (ym(zi)) dzi

The term gm(z) has a clear interpretation. It is the aggregate gain for all the marginal customers

around the circle of having one more customer at z. Note that in the intergrand, fz (ym(zi)) enters

multiplicatively, the higher the number of marginal customers at zi, the higher is the weight on

g(d(z, zi)). Note also that (14) has the feature of a "multiplicator". Due to the positive externality,

new members make the network more valuable which stimulates even more agents to join, and so

on.8

Inserting gm(z) in (8) immediately gives us our next proposition:

Lemma 7 In a pure strategy equilibrium, prices are given by

pA = pB = c+
1

2
∫ fz(ym(z))

1−2gm(z)dz
(15)

Let us discuss how prices depend on the degree of correlation between social location and

technological preferences more in detail. In the analysis we assume that assumption 1-3 are satisfied.

If social location and the tecnhology preference are uncorrelated, a = 0, then ym = 1/2 for all zi,

8 It follows that 2
∫
g(d(z, zi))f

z (ym(zi)) dzi < 1. To see this, note that since f(·) is single peaked and symmetric
around 0, f(0) ≥ f(y) for all y. Thus 2gm(z) = 2

∫
[g(d(z, zi))f (ym(zi)− azi)] dzi ≤ 2

∫
[g(d(z, zi))f

max] dzi =
2gfmax < 1 by assumption.
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and gm(z) = f(0)g. Hence, 9

pA = pB = c+
1

2fz(0)
− g (16)

Now we turn to the effects of lcoal network effects, arising from a higher correlaction. as described

above.

Proposition 5 Equilibrium prices are monotonically increasing in the degree of correlation between

social and technological preferences.

For given values of ym(zi), an increase in a increases |ym(zi)− azi| (since the last term has the

same sign as the first term). Furthermore, as we show in the appendix, an increase in a increases

|ym(zi)| for all zi 6= 0. Since f() is hump-shaped around 0 it follows that f(ym(zi)−azi) decreases

for all zi. This in turn also reduces gm(zi), and it follows from (15) that prices increases.

Intuitively, as a increases, the marginal consumers tend to be more extreme. For the A-network,

the market share becomes even bigger for zi < 0 and smaller for zi > 0, and the opposite for the

B network. In the tails, the density of agents is lower, hence there are fewer marginal customers.

This weakens competition and reduces prices.

As above, write g(z) = kḡ(z), and consider an increase in k. When location and technological

preferences are uncorrelated (a = 0), the price is given by (16), and an increase in k implies that

prices fall. With a positive correlation, an increase in k also increases |ym(zi)|, see lemma 3. As we

have seen, a higher |ym(zi)| reduces the number of marginal customers f(ym − az) as well as gm,

and from (15) we know that this tends to increase prices. The total effect is therefore ambigous.

However, as our next proposition shows, increased network effects may actually increase prices. As

above we write g(z) = kḡ(z), and without loss of generality we normalize ḡ to 1.

Proposition 6 Let g(z) = kḡ(z). Then a higher k may imply a higher equilibrium prices.

In the appendix we give an example. In the example, network externalities are "pure local",

in the sense that g(zi) is concentrated around zi, i.e., that an agent only cares about the choice of

network of the agents that are socially very close to him.
9Note that the equilibrium price p approaches marginal cost as 2fz(0) approaches g. This illustrates the possibility

that an equilibrium in pure strategies ceases to exist if competition is fierce. If 2fz(0) approaches g and the fz-
distribution has a long tail (with fz(z) strictly below fz(0) ( in the tail) the single firm has an incentive to deviate,
and charge a high price, serving customers with a very strong preference for its network, and obtain a positive margin.
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Proof: All we need to do in order to prove the proposition is to give an example in which an

increase in k leads to higher prices. We normalize ḡ(z) to 1. Consider the limit at which the

support of g(zi) collapses to zi, in which case we can write gm(z) =
∫
g(d(z, zi))f

z (ym(zi)) dzi =

kfz(ym(zi)). Let f be uniform and equal to 1 on an interval [−1/2 + ε, 1/2− ε], with the rest of

the probability mass, 2ε, are continously distributed outside this interval with unbounded support.

We analyze the limit case in which ε→ 0, so that fm(ym)→ 0 outside the interval. Furthermore,

let a > 1. From footnote 7 we know that at the interval at which f = 1, ym(zi) = −2kazi
1−2k . The

interval at which f = 1 is thus given by |ym(zi)| < 1/2, i,e, |zi| < 1−2k
4ka . The derivative wrt k

evaluated at k = 0 is thus − 1
4a . Let κ(k) = 1−2k

4ka . Then
∫
fm(ym(z)dz ≡ 2κ. Now consider the

denominator in (15), repeated for convenience

ρ(k) = 2

∫
fz(ym(zi))

1− 2kfz(ym(zi))
=

2κ

1− 2k

It is suffi cient to show that this is decreasing at k = 0. Taking derivatives give

ρ′(0) = 4(κ′(k) + 2)

= 2(− 1

4a
+ 2)

which is negative for a < 1
8 .

9 Endogenous agent heterogeneity

Differences in preferences between marginal and average agents may give rise to distortions. This

was first explored in Spence’s (1975) model of a monopolist’s choice of quality. If marginal and

average consumers value quality differently, the quality level chosen by the monopolist will not be

socially optimal.

Local network externalities, in contrast to global externalities, give rise to a difference between

marginal and average agents in a network, because the former on average obtain less utility from

interacting than the latter. This may lead to additional distortions that exacerbate the composition

ineffi ciencies analyzed above. In order to simplify the analysis we assume that F z(y) = F (y − az)

with the restrictions on F () laid out above. In the analysis we will draw heavily on the following

result, which we refer to as a corollary since it follows almost directly from 1.
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Corollary 2 Suppose H1 ∈ D is more concentrated than H0 ∈ D, and let g1
A(zi) and g0

A(zi) the

assocaited numbers of friends in the A−network. Then g1
A(zi) > g0

A(zi) for zi < 0.. Furthermore,∫
g1
A(zi)H

1(zi)dzi >
∫

g0
A(zi)H

0(zi)dzi

The corrolary state that the more concentrated is H, the more friends do individuals located

at zi < 0 have in the A network, and the higher is the total number of friends the customers of

the A−have in that network. In total, each agent has g friends, divided on the two networks. If H

is uniform and equal to 1/2, then the total measure of friends in the network is 1/2 ∗ g/2 = g/4.

The more concentrated is H, the higher is gA and the higher is the total number of friends in the

network. Conversely, the lower is the total number of friends the agents in the A-network have in

the B-network.

9.1 Compatibility

We will now discuss firms’ incentives to undertake investments in order to make networks one-

way compatible. Thus, network A may give its members (improved) access to network B by

undertaking an investment. Let θA ≤ 1 denote the degree to which agents in network A can utilize

network B, and write the cost of compatibility as an increasing an convex function C(θA), with

C(0) = C ′(0) = 0 and limc→1− C
′(1) =∞. We only include connection pricing (no two-part tariffs).

The degree of compatibility is set independently and simultaneously by the two firms at stage 1,

together with prices pA and pB. In other respects the timing is unchanged.

We assume that compatibility from the A-network to the B-network only benefits the consumers

in the A-network (consistent with the assumption above that only the caller receives utility). The

utilities of an agent (yi, zi) in network A and and B, respectively, are given by uA = β + gA(zi) +

θAgB(zi) − yi − pA and uB(yi, zi) = β + gB(zi) + θBgA(zi) − pB. The marginal consumer in the

A-network is characterized by (recall that gA + gb = g)

ym(zi) = 2gA(1− θA + θB
2

) + (pB − pA)− (1− θA)g

The distribution H(z) is thus defined by the fixed point to the mapping ΓC defined as

ΓCH(zi) = F

(
2

(
1− θA + θB

2

)∫
g(d(z, zi))H(z)dz + pB − pA − (1− θA)g − azi

)
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Network A’s net profit equals

πA = pA

∫
H(z)dz − C(θA)

In the appendix we show that the firms will choose degree of compatibility such that the marginal

customers’valuation of compatibility equals marginal costs. Recall from the last section that the

marginal customers on average have half of their friends in the other network. The first order

condition for θA is thus

C ′(θA) =
g

4
(17)

The socially effi cient degree of compatibility (contingent on equal market shares), by contrast,

maximizes welfare W defined by (12) less the costs CA(θA) + CB(θB):

W =

∫
[gA(zi) + θAgB(zi)gB(zi) + θBgA(zi)]H(zi) + Y − CA(θA)− CB(θB) :

MaximizingW w.r.t. θA atH = H∗ (the socially optimal distribution) gives the first order condition

C ′A(θA) =

∫
gB(zi)H

∗(zi)dzi (18)

Recall that
∫

gB(zi)H
∗(zi)dzi = g/2−

∫
gA(zi)H

∗(zi)dzi. From Corollarly 2 we know that
∫

gA(zi)H
∗(zi)dzi >

1/2. Hence right-hand side of (18), the total number of "friends" that the members of network A

have in network B given the optimal H∗, is less than g/4.

Proposition 7 The firms have too strong incentives to make the networks (one-way) compatible.

The planner is concerned with the average customers’utility from compatibility. The network

owner, by contrast, cares about the marginal customer’s utility from compatibility. Although the

average customer in the A network has more friends in that network than in the B network, this is

not the case for the average marginal consumer. To understand this, consider two social locations

zi and −zi, z > 0. Although the A network has more consumers at −z than at z, the number of

marginal consumers f(ym(z) − az) is the same at the two points. Hence symmetry implies that

the average number of friends among the marginal consumers is g/2. This result emerges despite

the fact that there are no externalities associated with compatibility in itself, as compatibility is

one-way. 10

10Farrel and Saloner (1992) find in a model with global network externalities that firms choose an optimal level of
compatibility. Our result shows that their result is not robust when allowing for local network externalities.
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The comparison above is between compatibility in the market solution and first best com-

patibility. It follows directly if the planner was setting the compatibility level given the market

distribution H, the planner would still set a lower θ than the market solution. If the planner decides

θ based on the market distribution H instead of H∗, the right-hand side of (18) would still be less

than g/2 and we would still have overinvestment in compatibility. In addition, increasing θA has

a negative effect on composition effi ciency, since it attracts agents that communicate intensively

with the other network (that is types zi > 0) and punish agents with most of their friends in the

A-network (types zi < 0). Hence, a high level of compatibility makes the equilibrium distribution

H(z) flatter. However, we have already seen that the effi cient distribution H∗(e) is steeper than

the equilibrium distribution H. Hence, in the constrained effi cient solution (where the planner

sets the level of compatibility but nothing else), the planner would reduce compatibility further in

order to obtain a more effi cient composition of consumers on networks.

9.2 Usage intensity

In this subsection we assume that consumers, when connected to a network, choose how much to

use it. We use communication platforms as our example. The argument could also be applied to

platforms where agents may choose how many applications to buy as well as to clubs.

We assume that the utility a consumer obtains from usage within a relationship is endogenous

and given by ω(x), where x is usage. Firms compete by offering two-part tariffs (pj , qj), j = A,B,

where p is a fixed fee and q is the cost of using the network. The net surplus v(qA) per friend for

a consumer in network A is

v(qA) = Max
x

[ω(x)− qAx]

We write the optimal usage as a function of qA, x(qA). Note that x(qA) ≡ −v′(qA).

Firms advertise a pair (pj , qj). The utility for a agent of joining the A network is v(qA)gA(zi)−

yi − pA and of joining the B network v(qB)gB(zi) − pB. By reasoning as above it follows that for

given prices, the equilibrium distribution Hx(z) is the fixed point to the mapping Γx given by

ΓxH(zi) = F

(
(v(qA) + v(qB))

∫
g(d(z, zi))H(z)dz + pB − pA − v(qB)g − azi

)
(19)

Note that for given qA and qB, v(qA) and v(qB) are constants, hence we can show existence and

uniqueness of the fixed point in exactly the same way as above.
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Define GA ≡
∫

gA(zi)H(zi)dzi as the total number of customers in the network.11 From

corollary 2 it follows that in a symmetric equilibrium, GA > g/4. The highest possible value of

GA is 1/2.12 The profit of firm A is given by

πA = (pA − c)NA + (qA − cx)x(qA)GA (20)

It follows that x(qA)GA shows aggregate usage of the network, while (qA − cx) is the mark-up

per unit of usage. We only consider symmetric equilibria, where each of the firms has half of the

market. In the appendix we derive the profit maximizing mix of usage price and fixed fee, given

that the market share is 1/2. It follows that the first order condition for qA can be written as

1

2
[1− γ]x(qA) + (qA − cx)x′(qA) +

x(qA)(qA − cx)elqGA

qA
= 0 (21)

where

γ :=
g/4

GA
< 1

and elqG is the elasticity operator. The variable γ represents the total number of friends that the

marginal customers have in the network relative to the number of friends that all the consumers in

the network have.

The denominator shows the total number of "friends" in the network, which is also the average

number since by normalization each network has a measure of 1 customers. With pure global

network externalities (a = 0), γ = 1. However, if a > 0, then γ ∈ (1/2, 1). The first term in (21)

thus represents rent extraction from the inframarginal customers. Since inframarginal customers on

average have higher usage intensity than marginal customers, increasing the usage price increases

total payments from existing customers, even though the fixed price pA is reduced so that the

market share of the firm stays constant. The second term in (21) is self-explanatory. The last term

shows the change in incomes from usage fees caused by changes in the composition of the network.

In the appendix we show that elqGA < 0: A higher usage price hurts the marginal agents with

many friends in its own network (z low) more than those with a few (z high). A higher qA thus

11Each pair of friends counts as two connections, as person i is friends with person j and person j is friends with
person i.
12This is obtained in the limit when i) the market is divided such that all customers in the southern (northern)

hemisphere belong to network A (B) and all a customers’s friends have a social position that is arbitrarily close to
his.
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implies that H becomes flatter, and hence that total traffi c falls (even though the market share

stays constant).

However, with marginal cost pricing, qA = cx, the last term in (21) is zero. Hence with marginal

cost pricing, the left-hand side of (21) is strictly positive as long as γ < 1. The next proposition is

thus immediate

Proposition 8 The firms set the usage price qk, k = A,B above marginal cost. Thus, the usage

price exceeds the price level that induces a static first best level of traffi c represented by marginal

cost pricing (provided that γ < 1).

This finding contrasts with the standard result that a two-part tariff induces marginal cost pric-

ing on usage and therefore effi cient usage in the standard model without local network externalities

(Farrel and Saloner 1992). Local externalities create agent heterogeneity, and since marginal cus-

tomers on average have lower usage than inframarginal customers, traffi c price can be used as a

rent extraction device. The firm thus trades off effi ciency and rent extraction for the inframarginal

("high-type") agents.

The network owner prices internal traffi c as if she had some degree of market power, where the

degree of market power is captured by the relative deviation between the marginal and the average

intensity of exchange. With global network externalities, symmetry between agents prevails (hence

γ = 1), which means that the network adopts marginal cost pricing. In the appendix we show that

γ decreases as the spread of g decreases.

A higher usage price hurts agents with many friends in the network (z low) more than those

with a few friends in their network (z high). As we show in the appendix, a higher usage price

makes the equilibrium distribution less concentrated. Hence excessive usage pricing moves the

equilibrium distribution further away from the composition effi cient distribution. In a constrained

effi cent solution, where the planner can decide on qA but nothing else, the planer would set the usage

price above marginal costs in order to improve on the equilibrium distribution H. The distortions

in usage pricing thus accesarbate the composition ineffi ciency created by social externalities.
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10 Concluding remarks

Network externalities are important in several markets, particularly those related to information

and communication technologies. In the economics literature, the focus has been on global network

externalities, where network effects are related solely to size. In the present paper we argue that

the network effects not only work through the size of the customer base, but also through its

composition, i.e., the identity and/or attributes of the customers in the customer base, in particular

their exogenously given relationships to each other. We refer to this as local network externalities.

We propose a way of modeling local network externalities, which is suffi ciently rich to cap-

ture the main attributes of network composition and still suffi ciently simple to make the analysis

tractable, and which embodies global externalities as a special case. We do this by using a two-

dimensional spatial model. Consumers have a location in a social space, and interact mostly with

people located closely to them in this space and less intensely with people further away. This as-

sumption is consistent with dominant sociological findings on the structure of social networks (c.f.

Granovetter 2005). In addition, consumers’technological preferences are represented by a location

in technological space. Finally, the consumers’ location in the two spaces may be correlated in

the sense that if two agents are close in the social space they are also likely to be close in the

technological space.

Two firms that are horizontally differentiated in technology compete for customers. We show

that as long as social preferences do not dominate technological preferences, the model has a

unique equilibrium. The equilibrium has several interesting properties. First, a higher correlation

between technological and social preferences lead to lower competitive pressure and higher prices.

Second, the allocation of consumers on networks is not effi cient, as there is a social externalities

associated with the choice of network that the customers do not take into account. Third, local

network externalities give rise to differences between average and marginal consumers, which leads

to ineffi ciently high usage prices and excessive levels of (one-way) compatibility.
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11 Appendix

11.1 Proofs related to existence

Proof of proposition 1

In this proof, it is convenient to relable the location. Define the location on [0, 1], with z = 0

at the south pole, and increasing clockwise to 1/2 at the north pole, and to 1 again at the south

pole. It follows that d(z1, z2) = min[|z2 − z1|, 1/2 − z1 − z2]. The distance between two points on

the cricle is unalterned, and the model is isomorphic to the model presented in the text.

Let C denote the subset of continous functions C[0, 1] that are bounded below by 0 and above

by 1. Clearly D is bounded and convex. Furthermore, Γ is a continous mapping from C to C.

We will show that our assumptions on the densities of F imply that the family of functions ΓH is

equicontinuous, in which case Schauder’s fixed-point theorem applies. For any given ε > 0, we have

to show that there exists a δ > 0 such that |ΓH(z1)− ΓH(z0)| ≤ ε for all |z1 − z0| < δ and for all

H ∈ C. Adding and subtracting F z1(β+
∫
g(d(z, z0))H(z)dz− p) and using the triangle inequality

give

|ΓH(z1)− ΓH(z0)| = |F z1(β +

∫
g(d(z, z1))H(z)dz − p)− F z0(β +

∫
g(d(z, z0))H(z)dz − p)|

≤ |F z1(β +

∫
g(d(z, z1))H(z)dz − p)− F z1(β +

∫
g(d(z, z0))H(z)dz − p)|

+|F z0(β +

∫
g(d(z, z0))H(z)dz − p)− F z1(β +

∫
g(d(z, z0))H(z)dz − p)|

Now

|F z1(β +

∫
g(d(z, z1))H(z)dz − p)− F z1(β +

∫
g(d(z, z0))H(z)dz − p|

≤ fmax|
∫

[g(d(z, z1))− g(d(z, z0))]H(z)dz|

≤ fmaxg(0)|z1 − z0|

Furthermore,

|F z0(β +

∫
g(d(z, z0))H(z)dz − p)− F z1(β +

∫
g(d(z, z0))H(z)dz − p)|

≤ fz|z1 − z0|
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Hence

|ΓH(z1)− ΓH(z0)| ≤ (fmaxg(0) + fz)|z1 − z0|

for all H, which is less than ε if |z1 − z0| ≤ δ = ε
fmaxg(0)+fz .

Proof of Proposition 2

We have to show that Γ is a contraction. To this end, let H1 and H2 denote two arbitrary

distribution functions. Then

sup
zi
|ΓH1(zi)− ΓH2(zi)|

= sup
zi
|F z(β +

∫
g(d(z, zi))H1(z)dz − p)− F z(β +

∫
g(d(z, zi))H2(z)dz − p)|

≤ fmaxg sup
zi
|H1(zi)−H2(zi)|

< sup
zi
|H1(zi)−H2(zi)|

since, by assumption, fmaxg < 1. Hence Γ is a contraction.

Proof of continuity of N(pB − pA)

Let α = 2fmaxg < 1. Consider a price change of ∆p = pA − pB. It follows that |Γ(H + ∆p)−

ΓH| = F z(2
∫
g(d(z, zi))H1(z)dz − p)− F z(2

∫
g(d(z, zi))H2(z)dz − p−∆p)| ≤ 2fmax∆p. Without

loss of generality, suppose ∆p > 0. Let H0 = min[H + 2fmax∆p, 1]. Then H1(z) = ΓH0(z) <

H0 + α∆p. Using the operator repeatedly it follows that |Γ(H + ∆p) − ΓH| ≤ fmax∆p
1−α , which

converges to zero as ∆p→ 0. Continuity follows.

11.2 Proofs related to the section "Equilibrium distrubutions"

Proof of Lemma 1

Since the mapping is symmetric around z = 0, it follows that H1(zi) is a symmetric distribution

function. We have to show that H1 is monotone. First we want to show that
∫
g(d(zi, z))H

0(z)dz

30



is decreasing in zi. Taking derivative with respect to zi gives (this is innocous, as it does not require

that H(z) is continuous)

d

dzi

∫
g(d(zi, z))H

0(z)dz =

∫
g′(d(zi, z))

δd(z, zi)

δzi
H0(z)dz

Since g is symmetric, we can rewrite this as∫
g′(d(zi, z))

δd(z, zi)

δzi
H0(z)dz =

∫ 1/2

x=0
g′(x)[H0(z+(x))−H0(z−(x))dx

where z−(x) is the location obtained by going clockwise x units and z+(x) the location obtained

by going counter-clockwise x units. Since H0(z) is symmetric and monotonically decreasing in

zji , j ∈ {e, w} when going from south to north, it follows that H0(z+(x)) ≤ H0(z−(x)) for all

x ∈ [0, 1], with strict inequality if the bounds do not bind. It follows that
∫

2g(d(zi, z))H
1(z)dz−g

is decreasing in zi, and strictly so i the bounds don’t bind everywhere.

Next we want to show that H1(z) is strictly decreasing. Let zi and zj be two arbitrary values

of z, with zi < zj . Then

ΓH0(zj) = F zj
(∫

2g(d(z, zj))H0(z)dz − g

)
≤ F zj

(
2

∫
g(d(z, zi))H0(z)dz − g

)
< F zi

(
2

∫
g(d(z, zi))H0(z)dz − g

)
= ΓH0(zi)

Hence ΓH0 is strictly decreasing in z.

Suppose H1 = ΓH0 is more concentrated than H0. Let H2(zi) = ΓH1(zi). We want to show

that H2 is more consentrated than H1. Now

H2(zi) = F zi
(

2

∫
g(d(z, zi))H1(z)dz − g

)
= F zi(2

∫
g(d(z, zi))H0(z)dz − g)+2

∫
g(d(z, zi))(H1(z)−H0(z))dz)

= F zi(ym1 (zi)+2

∫
g(d(z, zi))(H1(z)−H0(z))dz)

where ym1 = ym1 (zi) is the technology preference of the marginal consumer at zi. It is thus suffi cient

to show that
∫
g(d(z, zi))(H

1(z) − H0(z))dz > 0 for zi < 0. Let A(z) ≡ H0(z) − H1(z). Since
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H1 and H2 are symmetric distribution functions, we have that A(z) > 0 for z < 0 and that

A(z) = −A(−z). Suppose zi < 0. Let x denote the distance from equator to any point on the

circle. Then we can write

∫
Ω
g(d(z, zi))(H

1(z)−H0(z))dz.

=

∫ 1/2

0
A(z)[g(|z − zi|)− g(zi)]dz

> 0 (22)

Proof of lemma 2: Concavity/convexity properties of H

We want to show that H is concave on zwi ∈ [−1/4, 0]. Due to symmetry it then follows that H

is concave on zei ∈ [−1/4, 0] and concave on the complementary part of the circle. Let z2 < z1 < 0

and z̄ the average. Let ∆ = |z2 − z1|. We assume that ∆ is small.

First, define H0(zi) as H0(zi) = 1/2 for all zi. Consider H1 = ΓH0. Since the network effects

are equally strong in both networks, only the technological preferences matter, and ym(zi) = 0 for

all zi. It follows that H(zi) = F (−azi). By assumption F (y) is concave for y > H. It follows that

H1(zi) is concave on zwi ∈ [−1/4, 0].

Now suppose Hk(zi) is concave on zwi ∈ [−1/4, 0] and zwi ∈ [−1/4, 0] and convex on the com-

plementary part of the circle. Recall that

ym(zi) = 2

∫
g(z, zi)Hk(z)dz − g

It follows that

ym(z1) + ym(z2)

2
= 2

∫
g(z, z1) + g(z, z2)

2
Hk(z)dz − g

2

∫
g(z, z̄)

H(z −∆/2) +H(z + ∆/2)

2
− g

Note that H(z−∆/2)+H(z+∆/2)
2 < H(z) for z < 0 (on the concave part) while H(z−∆/2)+H(z+∆/2)

2 >

0 for z > 0 (on the convex part).

Now we rewrite the integral. We start from equator (say at the west side). Let x denote the

distance from equator. Let z(x−) the position when goint to the south (zw = −x on the western
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hemisphare and ze = −1/4 +x when on the eastern). Let z(x+) denote the position when going to

the north zw = x when on the western hemisphere and zw = 1/4− x when on the eastern. Then

∫
Ω
g(z, z̄)

H(z −∆/2) +H(z + ∆/2)

2

=

∫ 1/2

0
[g(d(x−, z̄))

H(z(x−)−∆/2) +H(z(x−) + ∆/2)

2
+ g(d(x−, z̄))

H(z(x−)−∆/2) +H(z(x−) + ∆/2)

2
]dz

=

∫ 1/2

0
[g(d(x−, z̄))(H(x−) + ξ(x−)) + g(d(x−, z̄))(H(x+) + ξ(x+))]dz

Given the concavity/convexity properties of Hk as well as symmetry, it follows that ξ(x−) > 0 and

that ξ(x−) = −ξ(x+). Since g(d(x−, z̄)) > g(d(x+, z̄)) for all x ∈ (0, 1/2) it follows that

∫
Ω
g(z, z̄)

H(z −∆/2) +H(z + ∆/2)

2
<

∫
Ω
g(z, z̄)H(z)dz

and hence that ym(z̄) > ym(z1)+ym(z2)
2 . Since F is concave for ym > 0 the result follows.

CHRISTIAN: FIGUR? The opposite holds for z > 0. The claim thus follows.

Proof of lemma 3 and 4

We first prove lemma 3. Let kh and kl denote two values of k, kh > kl. Let Hh, H l and Γh,Γl

denote the corresponding equilibrium distributions and equilibrium mappings, respectively. Finally,

let yml (zi) denote the technology preference of the marginal customer at zi given that k = kl. Define

Hh
1 (zi) = Γh(H l)(zi)

= F zi(

∫
khH lḡ(d(z, zi)dz − khḡ)

= F zi(
kh

kl

∫
klH lḡ(d(z, zi)dz − klḡ)

= F zi(
kh

kl
yml )

It follows directly that Hh
1 (zi) is more concentrated than H l(zi). Since Γh is a contraction, we

know that Hh = limn→∞ ΓhnH l, (where Γhn is the operator Γh applied n times), hence it follows

from lemma 1 that Hh is steeper than H l. This completes the proof of lemma 3.
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We will then prove lemma 4, and proceed in the same way. We use the same notation. Let ah

and al denote two values of a, ah > al. Analogous with the above notation, let Hh, H l and Γh,Γl

denote the corresponding equilibrium distributions and equilibrium mappings with a = ah and

a = al, respectively. Finally, let yml (zi) denote the technology preference of the marginal customer

at zi given that a = al. Define

Hh
1 (zi) = Γh(H l)(zi)

= F (

∫
H lg(d(z, zi)dz − g−ahz)

= F (yml −(ah − al)z)

Since (ah − al)z is negative for z < 0 and positive for z > 0, it follows imediately that Hh
1 (zi) is

more concentrated than H l, and by applying lemma 1 that Hh is more concentrated than H l. This

completes the proof.

Proof of Lemma 5

Proof that a more concentrated g gives a more concentrated H

Consider two utility functions ġ1 and g2, and suppose g2 is more concentrated than g1. Let H1

denote the equilibrium distribution function associated with g1. Consider H̄ = Γg2H1. We want

to show that H̄ is more concentrated than H1. Then it follows from lemma ??? that H2 is more

concentrated than H1.

Recall that

ym(zi) = 2

∫
g(d(z, zi)H1(zi)dzi − g

Note that we can write∫
g(d(z, zi)H1(zi)dzi =

∫ 1/2

x=0
g(x)[H(z+(x) +H(z−(x))]dx

Write h(x) = [H(z+(x) +H(z−(x))]. Since H is concave for z < 0 and convex for z > 0 it follows

that h(x) is decreaseing in x, and hence that
∫ 1/2
x=0 g(x)h(x)dx decreases when g(x) becomes more

concentrated. This completes the proof.
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11.3 Proofs regarding effi ciency

Maximizing and minimizing social value.

With two symmetric networks this is equivalent to maximizing VA with respect to the distrib-

ution H(z) subject to
∫
H(z)dz = 1, that is

max
H(zi)

∫∫
g(zi − z)H(z)H(zi)dzdzi s.t.

∫
H(zi)dzi = 1

with the associated Lagrangian

L =

∫ [∫
g(zi − z)H(z)dz − λ

]
H(zi)dzi

Point-wise maximization yields the first order condition∫
g(zi − z)H(z)dz − λ > 0→ H(zi) = 1∫
g(zi − z)H(z)dz − λ < 0→ H(zi) = 0∫
g(zi − z)H(z)dz − λ = 0→ H(zi) undetermined

Obviously there are two solutions satisfying the first order conditions, either H(z) = 0.5 all

z, or H(z) = 1 for all zε[z′,−(1 − z′)] where z′ is arbitrary, and H(z) = 0 otherwise.13 The two

solutions are referred to as the maximum and minimum solutions respectively.

First order conditions

Recall that the welfare function is given by (from 12)

W =

∫
[gA(z)H(z) + gB(z)(1−H(z)) + Y (z)]dz

We maximize (12) point-wise with respect to H(zi). First we characterize the derivative of Y (z)

with respect to H(zi). Since F z(ym(z)) = H(z), implicit derivation gives dym/dH = 1/fz(ym(z)).

Hence, from (11)

dY (zi)

dH(zi)
= −ym(z)

13Observe from the first order conditions that the number of friends in the A network,
∫
g(zi − z)H(z)dz, must

be equal for all zi at which H(zi) is strictly between 0 and 1. Then it follows trivially that H can be interior on an
interval only if H = 0.5 everywhere.
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Then note that

d

dH(zi)

∫
[gA(z)H(z) + gB(z)(1−H(z))]dz

= gA(zi)− gB(zi) +

∫
[
dgA(zi)

dH(zi)
H(z) +

dgB(zi)

dH(zi)
(1−H(z))]dz

= gA(zi)− gB(zi) +

∫
[g(d(zi, z)H(z)− g(d(zi, z)(1−H(z))]dz

= 2gA(zi)− 2gB(zi)

To get from the second to the third equation we used that a one unit increase in H on an interval

dz around zi increases the social value for an agent at zj if joining the network by g(d(zi, zj))dz

units). To go from the third to the last equations we used the definitions of ga and gb. The

first order condition for maximum is thus that 2gA(zi) − 2gB(zi) − ym(zi)) = 0. Inserting from

gA(z) + gB(z) = g, and set the derivative to zero gives

2 [2gA(zi)− g]− ym(zi) = 0

Hence

H∗(z) = F z(ym(z))

= F z (2 [2gA(z)− g])

= F z
(

2

[
2

∫
g(d(z, zi))H

∗(z)dz − g

])
as stated in the text.

11.4 Proof related to the section "Prices"

Proof of Lemma 6 (in main text)

The definition of Γ given by (4) reads

H1(zi) = F

(
2

∫
g(d(z, zi))H0(z)dz − g + pB − pA − azi

)
= F (ym(zi)− azi)

As Γ is a contraction mapping with modulus α < 1 (see proof of Proposition 1), we can apply

the method of successive appoximations. Note that a partial reduction in pA has an immediate

impact on market shares in addition to an infinite sequence of derived impacts. The aggregate

impact on firm A’s market share is then the sum of this infinite sequence of small changes.
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Refer to dH0(zi) as the direct initial impact on market share at location zi due to a reduction

in pA,

dH0(zi) = f (ym(zi)− azi) dpA

which is proportional to the density of marginal consumers at location zi. The aggregate initial

effect on firm A’s market share is then the integral over all locations

∫
dH0(zi)dzi =

[∫
f (ym(zi)− azi) dzi

]
dpA

Consider then the derived first round impact that follows from network externalities. For each

z, insert dH0
0 (z),

dH1(zi) = 2f (ym(zi)− azi)
∫
g(d(z, zi))dH

0(z)dz

= 2f (ym(zi)− azi)
[∫

g(d(z, zi))f (ym(z)− az) dz
]
dpA

= 2f (ym(zi)− azi) gm(zi)dpA

where gm(zi) is defined in (14) in the main text.

The integrated effect on A’s market share is then:∫
dH1(zi)dzi =

[∫
2gm(zi)f (ym(zi)− azi) dzi

]
dpA

The second round effect is

dH2(zi) = 2f (ym(zi)− azi)
∫
g(d(z, zi))dH

1(z)dz

= 4f (ym(zi)− azi)
[∫

g(d(z, zi))f (ym(z)− az) gm(z)dz

]
dpA

We integrate the second round effect∫
dH2(zi)dzi = 4

[∫ ∫
g(d(z, zi))f (ym(zi)− azi) f (ym(z)− az) gm(z)dzdzi

]
dpA

=

[∫
[2gm(z)]2 f (ym(z)− az) dz

]
dpA

And generally, the k′t order effect is∫
dHk(zi)dzi =

[∫
[2gm(z)]k f (ym(z)− az) dz

]
dpA
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The sum of integrated changes will be∫
dH(z) =

∞∑
k=0

∫
dHk(z)dz =

∞∑
k=0

[∫
f (ym(z)− az) [2gm(z)]k dz

]
dpA

=

[∫
f (ym(z)− az)

∞∑
k=0

[2gm(z)]k dz

]
dpA

=

[∫
1

1− 2gm(z)
f (ym(z)− az) dz

]
dpA

Since dNA =
∫
dH(z), we find

−dNA

dpA
=

∫
1

1− 2gm(z)
f (ym(z)− az) dz

which yields (14).

Proof of corollary 5

Consider two values of a, al and ah, al < ah. Denote the associated equilibrium distribution,

equilibrium mapping, and marginal technological preferences by H i, Γi, and ymi (z), respectively,

with i = l, h. First we want to show that f(ymh (zi)− ahzi) < f(yml (zi)− alzi) for zi except zi = 0,

where they are equal.

First note that |yml − ahzl| > |yml − alzi| for zi 6= 0, hence f(yml − ahzl) < fyml − alzi) (since

yml (z) < 0 when zi > 0). It is thus suffi cient to show that |ymh (zi)| > |yml (zi)| for zi 6= 0. To this

end, we have that

ΓhH l(zi) = F (2

∫
g(d(z, zi))H

l(z)dz − g − ahzi)

= F (2yml (zi)− (ah − al)zi)

> H l(zi) for zi < 0

From lemma 1 it follows that Hh > ΓhH l(zi), and hence that ymh (zi) > yml (zi) for zi < 0. Due to

symmetryIt thus follows that 0 > yml (zi) > ymh (zi) for zi > 0, and hence that |yml (zi)| < |ymh (zi)|

for all zi 6= 0 (at zi = 0 yml (zi) = ymh (zi) = 0). Hence f(ymh (zi) − ahzi) < f(yml (zi) − alzi) for all

zi 6= 0.

We can now calculate gmh (z)− gml (z):

gmh (zi)− gml (zi) =

∫
g(d(z, zi))[f

(
ymh (z)− ahz

)
− f

(
yml (z)− alz

)
dz < 0
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for all z 6= 0. It follows that
∫ fz(yml (z))

1−2gml (z) dz >
∫ fz(ymh (z))

1−2gmh (z) dz and hence that pA = pB defined by (15)

is increasing in a. This completes the proof.

Proof of Proposition 7

Note that the equilibrium configuration depends on the price difference, pA − pB, independent

of the price level. Hence we can first consider the impact of a higher a on equilibrium configuration,

and second address the implications for the price level.

It follows from Lemma 3 that for every zi < 0 then ym(zi) increases if a goes up. For zi < 0,

the density of the marginal consumer is f(ym(z)− az). Since ym(z)− az > 0 whenever z < 0, and

ym(z) − az increases, it follows that f(ym(z) − az) declines. For z > 0 we have that ym(z) − az

declines. Since ym(z) − az < 0 it follows that f(ym(z) − az) declines. Thus the set of marginal

consumers gm(z) declines and equilibrium price increases.

11.5 Proofs related to the section "Endogeneous consumer hetrogeneity"

Proof of Corollary 2

This follows directly by applying equaiton (22) twice.

Compatibility - first order conditions

In any equilibrium, the combination of pi and θi maximizes the profit of firm i given its market

share (Armstrong and Vickers 2001). At z = 0, all agents have the same number of friends in both

networks, hence the indifference curve of a consumer at this point is of the form θA
g
2 − pA = K,

where K is a constant. Consider a marginal change in pA and θA satisfying the indifference

constraint. Yhe new distribution function H̃ will satisfy H̃(0) = 1/2, and since f() is symmetric,

that H̃(z) = H̃(−z). Hence the market share of firm A stays constant and equal to 1/2.

Firm A chooses a combination of compatibility and prices pA that maximizes profit for a given

market share, i.e., solves (assuming symmetry)

max
θA,pA

pA
2
− C(θA) s.t. − dpA +

g

2
dθA = 0

with first order condition

C ′(θA) = g/4
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as stated in the text.

Two part tariff - first order conditions

We use the same procedure as for compatibility. The indiffference curve of an agent located at

zi = 0, with half of his friends in the network, has the form of −pA + v(qA)g/2 = K, where K is a

constant. Hence

dpA
dqA

=
v′(qA)g

2
=
−x(qA)g

2
(23)

Maximizing (20) with respect to qA subject to (23) yields the first order condition

−NA
x(qA)g

2
+
[
x(qA) + x′(qA)(qA − c)

]
GA

+x(qA)(qA − c)
∂GA

dqA
= 0

or (since NA = 1/2 in the symmetric equilibrium)

1

2
[1− γ]x(qA) + (qA − cx)x′(qA) +

x(qA)(qA − cx)elqGA

qA
= 0

where γ := 1
2g/GA and elq is the elasticity operator.

Consider a person located at zi.The derivative of uA and uB wrt qA given (23) gives

duA(zi)

dqA
= −x(qA)(gA(zi)− g/2)

Since gA(zi) > g/2 for zi < 0 and gA(zi) < g/2 for zi > 0 it follows that an increase in qA makes

H less concentrated. From Lemma 2 it follows that GA decreases. Hence elqGA < 0.
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