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Abstract

Stepwise models of technological progress described by Philippe Aghion and
his co-authors (1997, 2001, 2005) capture the incentives of firms to innovate in
order to escape competition and the disincentives from sharing profits with other
technological leaders. The models yield intuitively appealing predictions about
the effects of competition on innovation, but they are limited to competition
in duopolies. This paper extends the models to oligopolies and shows that the
predictions of the effects of competition on innovation from the duopoly models
do not generalize to oligopolies.

1 Introduction

In a series of papers, Philippe Aghion and his co-authors (Aghion et al. 1997,
2001, 2005) strengthen the theoretical foundation for the analysis of innova-
tion incentives by developing models of “stepwise” innovation. The firms in
these models make discrete improvements to their production technologies and
a firm that is behind the technological frontier must first catch up to the current
market leader before it can become a new leader. Competition has contrasting
effects in these models. Competition increases the incentive for a firm to invest
to differentiate itself from an equally effi cient rival, but deters investment by re-
ducing the profit the firm can earn if it catches up to a market leader. Whether
an increase in competition increases or decreases incentives to innovate depends
on industry structure and these relative effects.

Aghion and his co-authors apply their theory to a continuum of industries,
each of which is populated by a duopoly. They model the effects of competition
by allowing the intensity of competition to vary in the duopoly markets. In
this paper, we extend the stepwise innovation models in Aghion et al. (2001)
and Aghion et al. (2005) to symmetric n-firm oligopolies. We show that the
intensity of competition in a duopoly is not a reliable proxy for the effect of
greater rivalry.

In particular, for some parameter specifications the innovation rate in the
duopoly model of Aghion et al. (2005) is a decreasing function of the intensity
of competition. However, with the same specifications the n-firm model shows

1University of California, Berkeley, Norwegian Business School and University of Cam-
bridge, respectively. We are grateful for helpful comments from John Vickers and participants
in the Industrial Organization Seminar at the University of California, Berkeley and for finan-
cial support from the Berkeley Competition Policy Center and the Norwegian Competition
Authority.
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innovation increasing with the number of rivals. For other parameter specifi-
cations the duopoly model in Aghion et al. (2001) shows innovation increasing
with the intensity of competition, while our model of an n-firm industry shows
an “inverted-U”relationship between innovation and the number of rivals.

These results are relevant to antitrust policy for industries that exhibit step-
wise innovation. Antitrust authorities often take innovation into account in
their enforcement decisions for mergers in high technology industries (Hesse,
2014; Gilbert and Greene, 2015). Our analysis demonstrates that existing mod-
els of stepwise innovation have to be generalized to oligopolies for the theory to
inform merger policy for industries in which innovation progresses in a stepwise
fashion.2

Section 2 develops the value functions for firms in a symmetric n−firm
oligopoly and derives investment rates under the assumption that firms’pro-
duction technologies can differ by at most one increment of marginal cost. The
value functions and investment rates depend on whether firms are leaders at the
technological frontier or laggards with an inferior technology. Section 3 develops
general formulas for the expected rate of technological innovation averaged over
all industries with different numbers of leaders and laggards. In section 4 we
estimate oligopoly prices and profits corresponding to the demand specifications
in Aghion et al. (2001) and Aghion et al. (2005). Section 5 applies these es-
timates to compare oligopoly innovation rates for oligopolies to the estimated
innovation rates in the duopoly models with corresponding demand parameters.
Section 6 concludes.

2 Stepwise investment with n rivals

Following Aghion et al. (2001, 2005) we model incentives for firms to invest to
lower their marginal production costs. Investment generates a Poisson hazard
rate of discovery at a cost that is proportional to the square of the hazard
rate. Successful investment reduces a firm’s marginal cost by one “step” from
c to c/γ with γ > 1. The model makes the simplifying assumption that the
industry elasticity of demand is unity, which implies that profits and therefore
the incentives to invest depend only on relative costs.

We develop the model under the assumption that rival firms’technologies
can differ by at most one step.3 A firm can be a “leader”at the technological
frontier or a “laggard”that is one step behind. (Firms are “neck-and-neck” if
all firms are leaders.) We begin by deriving the equations that determine the
values of leaders and laggards in an n−firm oligopoly conditional on the number
of leaders.

2Measures that affect competition holding the number of rivals fixed can be relevant for
antitrust policy in a non-merger context. See, e.g., Segal and Whinston (2007) and Baker
(2016).

3The dependence of the innovation rate on the number of rival firms is not qualitatively
different if we allow firms’technologies to differ by at most two steps.
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Define:

• k = the number of leaders

• πk = a leader’s profit flow with k leaders and n− k laggards

• π̄k = a laggard’s profit flow

• Vk = a leader’s present-value profit

• V̄k = a laggard’s present-value profit

• xk = a leader’s investment rate

• x̄k = a laggard’s investment rate

Firms are motivated to invest in research and development by the change
in profits if their investments are successful and by capital gains or losses that
would occur if they or their rivals innovate. The value function for a firm that
is one of k leaders with n− k firms that lag by one step is

Vk =
(πk − 1

2βx
2
k)dt+ e−rdt{xkdtV1 + (k − 1)x′kdtV̄1 + (n− k)x̄kdtVk+1

+[1− (xk + (k − 1)x′k + (n− k)x̄k)dt]Vk}

where x′k is investment by a rival leader. The first term is the firm’s current
profit net of its investment cost. The other terms are present-value profits
weighted by the probability of transitioning to different industry states. The
stepwise model assumes that firms can advance the state of technology by only
one step if they invest in research and development and firms cannot lag the
market leader by more than one step. As a consequence, if a market leader
advances by one step, all other firms lag the leader by one step, regardless of
whether they were at the industry frontier or one step behind when the firm
advanced.

Spillovers are built into the stepwise model in the sense that firms cannot
lag the market leader by more than one innovation step. In addition, we allow
lagging firms to benefit from additional technological spillovers that reduce the
marginal cost of investing from βx̄k to sβx̄k with s ∈ (0, 1].

The value function for a laggard when k rivals are at the technology frontier
is

V̄k =
(π̄k − 1

2sβx̄
2
k)dt+ e−rdt{x̄kdtVk+1 + (n− k − 1)x′kdtV̄k+1 + kxkdtV̄1

+[1− (x̄k + (n− k − 1)x̄′k + kxk)dt]V̄k}

where x̄′k refers to a rival laggard’s investment. Note that Vk is defined for
k = 1, ..., n and V̄k for k = 1, ..., n − 1. Moreover, note that x1 = 0 because a
firm that is the only market leader cannot further distance itself from its rivals.
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Taking limits with e−rt ' 1− rdt and ignoring second-order terms gives the
Bellman equations

rVk = πk + xk (V1 − Vk) + (k − 1)x′k
(
V̄1 − Vk

)
(1)

+(n− k)x̄k (Vk+1 − Vk)− 1

2
βx2

k

and

rV̄k = π̄k + x̄k
(
Vk+1 − V̄k

)
+ (n− k − 1) x̄′k

(
V̄k+1 − V̄k

)
(2)

+kxk
(
V̄1 − V̄k

)
− 1

2
sβx̄2

k.

The term xk (V1 − Vk) in equation (1) is the expected capital gain from
successful investment by a leader when the industry has a total of k leaders.
This term measures the value to a leader from escaping competition and is
the inverse of the Arrow replacement effect (Arrow, 1962). The greater the
competition, the greater is the incentive to invest (a smaller Arrow replacement
effect).

The term x̄k
(
Vk+1 − V̄k

)
in equation (2) is the expected capital gain from

successful investment by a laggard in an industry with k leaders. With typical
profit specifications, the larger the number of existing leaders, the more diffi cult
it is for a new leader to achieve an immediate return from its innovation because
πk+1−π̄k is declining in k. This term measures the magnitude of Schumpeterian
appropriation effects (Schumpeter, 1942). However, competition also increases
the firm’s incentive to invest if it catches up to market leaders. As Vk+1 − V̄k
incorporates both effects, the net effect of competition from industry leaders for
laggard investment is uncertain.

Other terms in equations (1) and (2) reflect capital losses when rivals inno-
vate. For example, the term (k − 1)x′k

(
V̄1 − Vk

)
is a leader’s expected capital

loss from innovation by rival leaders and the term (n − k)x̄k (Vk+1 − Vk) is a
leader’s expected capital loss from innovation by laggards.

The profit-maximizing investment rates satisfy the first-order conditions

x∗k =
1

β
(V1 − Vk) (3)

and
x̄∗k =

1

sβ

(
Vk+1 − V̄k

)
. (4)

Equations (1)-(4) enable closed-form solutions for the profit-maximizing in-
vestment rates. The steps are in Appendix 1. Leader investments satisfy

rxk =
1

β
(π1 − πk)− (n− 1) x̄1x2 (5)

− (k − 1)xk [−sx̄1 − x2 + xk]

− (n− k) x̄k [−xk+1 + xk]− 1

2
x2
k
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for xk = 1, ..., n and laggard investments satisfy

srx̄k =
1

β
(πk+1 − π̄k) + kxk+1 [−sx̄1 − x2 + xk+1] (6)

+ (n− k − 1) x̄k+1 [−xk+2 + xk+1] +
1

2
x2
k+1

− (n− k − 1) x̄k [−sx̄k+1 − xk+2 + xk+1 + sx̄k]

−kxk [−sx̄1 − x2 + xk+1 + sx̄k]− 1

2
sx̄2
k

for x̄k = 1, ..., n− 1. We use numerical methods to solve these equations for the
profit-maximizing investment rates.

The corresponding investment rates in Aghion et al. (2001) are

(r + h)x2 =
1

β
(π1 − π2)− 1

2
x2

2

and
(r + h)x̄1 =

1

β
(π2 − π̄1)− x2x̄1 +

1

2
x2

2 −
1

2
x̄2

1.

These equations are identical to the corresponding equations (5) and (6) when
n = 2, with the exception that we model technological spillovers with the cost
parameter s ∈ (0, 1] and assume that h = 0.4 We depart from the spillover
assumptions in Aghion et al. (2001, 2005) because, unlike our formulation,
their additive specification implies that the proportional effect of spillovers on
each firm’s investment is an increasing function of the number of rivals. That has
no consequence when the number of rivals is fixed, but assigns an unreasonable
weight to spillovers for industries with larger numbers of rivals.5

3 Innovation rates

Aghion et al. (2001, 2005) model innovation by a continuum of industries, each
of which is a duopoly. The average innovation rate over all industries depends
on the share of industries in which one firm is at the technological frontier,
with the remainder neck-and-neck, and the investment rates by firms in these
states. We extend these models to a continuum of industries, each of which is
an oligopoly with n rivals.6

4These equations also correspond to the closed-form solutions in Aghion et al. (2005) when
h = 0.

5Nonetheless, we obtain qualitatively similar results if we replace the cost parameter, s,
with the additive spillover, h, and in an alternative formulation in which the additive spillover
rate is independent of the numer of rivals.

6For public policy such as merger enforcement, it is more realistic to consider a single
industry that can be in different technology states. The asymptotic frequencies of states with
a given number of technology leaders correspond to the shares of industries with the same
number of leaders in a continuum of industries.
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Let k denote a state with k frontier firms and let µk be the share of industries
in state k. In a steady-state equilibrium, the share of industries that enter state
k is equal to the share of industries that exit state k. For state k = n,

nµnxn = µn−1x̄n−1. (7)

The left-hand side of equation (7) is the rate at which industries exit state
k = n. A share µn of industries have k = n and each of the n firms in this state
invests at a rate xn. The right-hand side is the flow into state k = n. That flow
corresponds to a share µn−1 of industries in which there is a single laggard that
invests x̄n−1. Similarly, for all other industry states

µn−1 [(n− 1)xn−1 + x̄n−1] = 2µn−2x̄n−2

µn−2 [(n− 2)xn−2 + 2x̄n−2] = 3µn−3x̄n−3

...

µ3 [3x3 + (n− 3) x̄3] = (n− 2)µ2x̄2

µ2 [2x2 + (n− 2) x̄2] = (n− 1)µ1x̄1

In addition,
n∑
i=1

µi = 1.

Cost falls by the factor γ > 1 when all firms in the industry advance by one
step; i.e., the industry completes a cycle, returning firms to the same state but
advanced one step. To derive the average innovation rate across all industries,
consider an industry in state 1 with k = 1 and label all states with k > 1 as
state 0. The flow out of state 1 (and into state 0) is (n− 1)µ1x̄1. This is the
intensity of laggard investments in state 1 industries. The flow out of state 0
(and into state 1) is (recall that x1 = 0)

2µ2x2 + 3µ3x3 + ..+ nµnxn =

n∑
i=2

iµixi.

An industry advances by one step when it goes through a cycle represented
by states 1, 0, and 1. The cycle ends with each firm in the industry one step
higher up on the innovation ladder, reducing cost by the factor γ. Hence it is
the frequency of cycles such as 1-0-1 that determines the steady state growth
rate.

In steady state, at each instant of time there are laggard innovations in
state 1 industries with intensity (n− 1)µ1x̄1. Similarly, with the same intensity∑n
i=2 iµixi, there are leader innovations in state 0 industries. As the µ vector

is constant in steady state, these flows advance the technology by γ at a rate
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equal to this intensity.7 This means that the steady state growth rate is

g = (n− 1)µ1x̄1 ln γ =

n∑
i=2

iµixi ln γ.

4 Demand and profits

We simulate profit-maximizing investments and steady state innovation rates
under two demand specifications. The first assumes a constant and equal elas-
ticity of substitution between products offered by the firms in the industry. This
specification extends the results in Aghion et al. (2001) to an industry with n
firms. The second assumes homogeneous products and extends the modified
Bertrand profit function in Aghion et al. (2005).

4.1 Constant elasticity of substitution demand

Consumers maximize

u(q1, ..., qn) =

(
n∑
j=1

qαj

)1/α

subject to
n∑
j=1

pjqj = 1.

The parameter α ∈ (0, 1] measures the degree of substitution between products
and is an index for the intensity of competition in an industry conditional on
the number of rival firms. Utility maximization implies demands

qi =

(
n∑
j=1

(
pi
pj

) α
1−α
)−1

1

pi
.

Let pk be the price charged by a leader when the industry has k leaders and
let p̄k be the corresponding laggard price. Let i denote a leader and j denote a
laggard. Define the relative price

p̂k =
pk
p̄k

for k = 1, ..., n− 1

with p̂n = 1. We show in the Appendix that p̂k is the solution to

p̂k =
1 + (1−α)

k+(n−k)(p̂k)
α

1−α−1

1 + (1−α)

k
(

1
p̂k

) α
1−α+n−k−1

(
1

γ

)
, k = 1, 2, .., n− 1

7There are also internal flows in state 0 industries. If a laggard innovates in an industry
with k = 2, then k increases to 3, and so on. However, in steady state, these internal flows do
not change the composition of firms in state 0 and hence have no impact on growth.
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and

πk =
1− α

k + (n− k) (p̂k)
α

1−α − α
, k = 1, 2, .., n

π̄k =
1− α

k
(

1
p̂k

) α
1−α

+ n− k − α
. k = 1, 2, .., n− 1.

Note that this specification is identical to the CES demand model in Aghion
et al. (2001) when n = 2.

4.2 Modified Bertrand competition

An alternative specification extends the model of Bertrand competition with
homogeneous demand in Aghion et al. (2005). Leading firms share profits that
depend on the degree of competition and lagging firms earn zero profits.

For k = 1,

π1 = π = 1− 1

γ
.

For k = 2, ..., n,

πk =
π1

k
(1− α)

and for k = 1, ..., n− 1,
π̄k = 0.

Only firms at the frontier can earn profits in this specification, which they
share equally with other leaders. Profits are inversely related to α ∈ [0, 1) when
k ≥ 2. The term α serves as a measure of the intensity of competition, with
the additional assumptions that lagging firms earn zero profits and the profit of
a single leader is independent of the number of laggards and the parameter α.
This specification is identical to the model of modified Bertrand competition in
Aghion et al. (2005) when n = 2.

5 Results

In this section we present some results of our n-firm oligopoly model for the
different demand specifications. We contrast our results with those in Aghion
et al. (2001) and Aghion et al. (2005), which describe stepwise innovation in
a duopoly with constant elasticity of substitution (CES) demand and modified
Bertrand competition, respectively. Although our model is similar in many
respects, the results differ substantially, as do their implications for policies
such as antitrust enforcement for mergers that may affect innovation incentives.
Below we summarize some of the key differences.

In the Aghion et al. (2001) analysis of a duopoly with CES demand, the
authors find that the industry innovation rate is typically an increasing function
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of the degree of competition as measured by α, which is proportional to the
elasticity of substitution between products.8 We also find that the innovation
rate is increasing in α if the number of firms is fixed. However, holding α fixed,
the innovation rate increases with the number of rivals when n is small and
then levels off or decreases. Competition, as measured by the number of rivals
holding the elasticity of substitution fixed, has rapidly diminishing returns for
innovation and the industry innovation rate has an “inverted-U”dependence on
the number of rivals.

We illustrate this result in Figures 1 and 2. The calculations are based on
parameters chosen to generate innovation rates consistent with typical industry
averages. The results in Figures 1 and 2 are for CES demand with no technologi-
cal spillovers (s = 1). Our focus is on a comparison of the effects of competition
on innovation rates when n = 2 with the effects for larger values of n. The
line for n = 2 in Figure 1 corresponds to the CES demand model in Aghion et
al. (2001). It is increasing in α; a change in α from 0.10 to 0.90 increases the
innovation rate by a factor of about four. In contrast, increasing the number of
rivals has a relatively small and nonlinear effect on the innovation rate for any
value of α and this small effect changes sign for large values of α.

Figure 2 shows the percentage reduction in the rate of innovation if the
number of firms decreases by one. The two series correspond to moderate (α =
.50) and intense (α = .95) market competition as measured by the elasticity of
substitution between products. For example, a reduction in the number of rivals
from three to two reduces the rate of innovation by about 16% when α = .50
and by about 20% when α = .95. A reduction in the number of rivals has
smaller effects in industries with larger numbers of firms. With CES demand,
the innovation rate peaks at three firms if α = .50 and at five firms if α = .95.
This differs sharply from the effect of competition on innovation in the duopoly
model, for which competition is measured by the elasticity of substitution rather
than the number of rivals.

Figure 3 repeats the comparison under the assumption that spillovers are
large (s = .1), corresponding to a 90% reduction in the cost of innovation for
laggard firms. For a duopoly, spillovers tend to moderate the effect of competi-
tion as measured by α, compared to a duopoly with no spillovers. In contrast,
holding α fixed, reducing the number of rivals has a larger negative effect on the
innovation rate when spillovers are large for an industry with few firms, com-
pared to an industry with no spillovers. Similar to the case with no spillovers,
reducing the number of rivals from n to n− 1 has a relatively modest effect on
the rate of innovation when n is five or more.

With homogeneous products and modified Bertrand competition, Aghion
et al. (2005) make the case for an “inverted-U”dependence of innovation on
competition. That result depends critically on assumed technological spillovers
for a firm that is behind the technological frontier. With Bertrand competition

8See Aghion et al. (2001), Figure 6, p. 487.
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and no spillovers, the innovation rate in a duopoly is a decreasing function of
the degree of competition if the interest rate is not too large.9 This is evident
from Figure 4, which shows the innovation rate as a function of the competition
parameter α for different numbers of competitors. The Aghion et al. (2005)
model corresponds to n = 2. Increasing α from 0.10 to 0.90 lowers the duopoly
innovation rate by about 10% when there are no spillovers.

However, Figure 4 also shows that competition increases the rate of inno-
vation in an industry with homogenous demand and modified Bertrand pricing
when competition is measured by the number of rivals, even if there are no
technological spillovers. Figure 5 shows the percentage reduction in the indus-
try innovation rate when the number of firms in the industry is reduced from
n to n− 1 and s = 1, corresponding to no spillovers. In the modified Bertrand
model, a reduction in the number of rivals, for example by merger, can have
a significant adverse effect on industry innovation even in an industry with as
many as five or six firms prior to the reduction in rivalry.

Figure 6 illustrates the effects of technological spillovers in the stepwise in-
novation model when firms behave as modified Bertrand competitors with ho-
mogeneous demand and the spillover cost parameter is s = .4. For the duopoly
case considered by Aghion et al. (2005) the industry innovation rate exhibits
an inverted-U with respect to the competition parameter, α. Increasing α from
0.20 to 0.50 increases the duopoly innovation rate by about 5%, and the rate
levels off and then declines for higher values of α.10 In contrast, adding another
rival has a large positive effect on the industry innovation rate when the indus-
try has two or three firms. As in Figure 5, the incremental effect of rivalry on
innovation is a decreasing function of the number of firms in the industry.

The reader may question why the qualitative effects of the number of rivals on
industry innovation should be so different under the two demand specifications.
The reason is that investment rates depend on the incremental profits that a
firm can earn by investing in R&D. Innovation by an industry leader increases
the firm’s instantaneous profit flow by π1−πk and for a firm that is behind the
technological frontier the increase is πk+1− π̄k. These incremental profits differ
significantly for the two demand specifications.11

6 Conclusions

The stepwise innovation model developed in a number of papers by Philippe
Aghion and his co-authors is instructive because it explicitly accounts for com-

9This follows from Proposition 2 in Aghion et al. (2005) with the spillover parameter
h = 0.
10For a duopoly, the inverted-U dependence of the innovation rate on the competition

parameter, α occurs only for intermediate values of the spillover cost parameter, s. The
duopoly innovation rate decreases with α when spillovers are small (s close to one), as shown
in Figure 4, and increases with α when spillovers are large (s close to zero).
11See Boone (2000) for a discussion of the competitive implications of different profit func-

tions for R&D investment in a static context.
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petitive effects that depend on the relative technological position of a firm in an
industry. Competition encourages firms to invest to escape competition from
equally effi cient rivals, but competition also discourages investment by reducing
the payoff from catching up with rivals. However, these papers consider only
duopolies and model competitive effects by varying the degree of competition
in the duopoly context. We show that the predictions from these models do
not generalize to situations in which competition is determined by the number
of rivals. In particular, the duopoly assumption is too restrictive to aid public
policy for merger enforcement for innovative industries, which addresses the ef-
fect of a decrease in the number of rivals in an oligopolistic industry on firms’
incentives to innovate and has only indirect effects, if any, on the elasticity of
substitution between products.

Our empirical simulations demonstrate that the effects of the number of
rivals on incentives to invest in research and development depend critically on
the specification of industry demand. Innovation incentives depend on the incre-
mental profits from innovating, which depend on the nature of industry demand
and the structure of competition. With homogeneous products and modified
Bertrand competition we show that, holding the intensity of competition fixed,
increasing the number of rivals in an industry typically increases the innovation
rate. In contrast, in the duopoly model described in Aghion et al. (2005) with
a similar demand and profit structure, increasing the intensity of competition
reduces the innovation rate if there are no technological spillovers. In an indus-
try characterized by constant elasticity of demand, the innovation rate increases
with competition in the duopoly model in Aghion et al. (2001). Yet we find that
innovation exhibits an inverted-U dependence on the number of firms, holding
the elasticity of substitution fixed.

Although we extend the step-wise model to allow for oligopolistic interac-
tions, we do not imply that the model is a general description of innovation
incentives. The stepwise model makes numerous assumptions that need not
be satisfied in actual markets. Furthermore, our simulations do not account
for effi ciencies that can be present in many industry circumstances. Industry
consolidation can eliminate redundant research and development activities and
facilitate benefits from complementary R&D programs. In addition, the merg-
ing parties could have complementary products or assets such as distribution
facilities that increase the return to R&D activities. These factors may be rele-
vant to an assessment of the effects of a proposed merger on innovation and are
not captured in the stepwise innovation models examined in this paper.
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Figure 1. Innovation rates with CES demand (no spillovers: s = 1).

Figure 2. Percent reduction in rate of innovation moving from n to n − 1
firms with CES demand for different values of the competition parameter (no
spillovers: s = 1).
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Figure 3. Innovation rates with CES demand and large spillovers (s = .1).

Figure 4. Innovation rates with homogeneous products and modified Bertrand
competition (no spillovers: s = 1).
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Figure 5. Percent reduction in rate of innovation moving from n to n − 1
firms with modified Bertrand competition for different values of the competition
parameter (no spillovers: s = 1).
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Figure 6. Innovation rates with homogeneous products and modified Bertrand
competition (large spillovers: s = .4).
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Appendix 1. Derivation of investment rates

Closed-form solutions for the profit-maximizing investment rates can be ob-
tained as follows. For xk, take the difference r(V1 − Vk). Using x∗1 = 0 and the
first-order condition x∗k = V1−Vk

β gives (omitting the asterisks):

r (V1 − Vk) = βrxk

= π1 − πk + (n− 1) x̄1 (V2 − V1)

−xk (V1 − Vk)− (k − 1)x′k
(
V̄1 − Vk

)
− (n− k) x̄k (Vk+1 − Vk) +

1

2
βx2

k.

Next, we apply the first-order conditions to eliminate the value differences. For
example

V2 − V1 = −βx2

and

V̄1 − Vk = V̄1 − V2 + V2 − V1 + V1 − Vk
= β (−sx̄1 − x2 + xk) .

The result is

rxk =
1

β
(π1 − πk)− (n− 1) x̄1x2 − x2

k

− (k − 1)xk [−sx̄1 − x2 + xk]

− (n− k) x̄k [−xk+1 + xk] +
1

2
x2
k

for xk = 1, ..., n.

Similarly, for x̄k, take the difference r
(
Vk+1 − V̄k

)
and use the first order

condition x̄k = Vk+1−V̄k
sβ :

r
(
Vk+1 − V̄k

)
= sβrx̄k

= πk+1 − π̄k + kxk+1

(
V̄1 − Vk+1

)
+ (n− k − 1) x̄k+1 (Vk+2 − Vk+1) +

1

2
βx2

k+1

− (n− k − 1) x̄k
(
V̄k+1 − V̄k

)
−kxk

(
V̄1 − V̄k

)
− 1

2
sβx̄2

k.

Applying other first-order conditions to eliminate the value differences yields

srx̄k =
1

β
(πk+1 − π̄k) + kxk+1 [−sx̄1 − x2 + xk+1]

+ (n− k − 1) x̄k+1 [−xk+2 + xk+1] +
1

2
x2
k+1

− (n− k − 1) x̄k [−sx̄k+1 − xk+2 + xk+1 + sx̄k]

−kxk [−sx̄1 − x2 + xk+1 + sx̄k]− 1

2
sx̄2
k
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for x̄k = 1, ..., n− 1.

Appendix 2. Derivation of prices and profits for CES demand

Households maximize

f(q1, ..., qn) = (qα1 + ..+ qαn)
1/α

, α ∈ (0, 1]

subject to the budget constraint

n∑
i=1

piqi = 1

The associated first order conditions are (µ is the lagrange parameter)

(qα1 + ..+ qαn)
1/α

qα−1
j − µpj = 0

thus (
qj
qi

)α−1

=
pj
pi
.

Using this result along with the budget constraint gives

qj =

(
n∑
i=1

(
pj
pi

) α
1−α
)−1

1

pj
.

Following Aghion et al. (2001), let

λj = pjqj =

(
n∑
i=1

(
pj
pi

) α
1−α
)−1

.

Hence the demand elasticity for product j is:

−ηj =
α

1− α

n∑
i=1

(
pj
pi

) α
1−α − 1

n∑
i=1

(
pj
pi

) α
1−α

+ 1

=
α

1− α

[
1

λj
− 1

]
λj + 1

=
1− λjα
1− α .

The first order condition for profit maximization is

pj

(
1 +

1

ηj

)
= cj
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or

pjα

(
1− λj

1− λjα

)
= cj

so that

pj =

(
1− αλj
α (1− λj)

)
cj

and profit is

πj = (pj − cj) qj

= λj

(
1− α

1− αλj

)
.

Let pk be the price charged by a firm at the technological frontier when
there are k leaders and let p̄k be the price charged by a laggard when there are
k leaders. For k = 1, ..., n− 1 define

p̂k =
pk
p̄k
.

Then we have:

λk =
1

k + (n− k) (p̂k)
α

1−α
, k = 1, 2, .., n

λ̄k =
1

k
(

1
p̂k

) α
1−α

+ n− k
, k = 1, 2, .., n− 1

p̂k =
1 + 1−α

k+(n−k)(p̂k)
α

1−α−1

1 + 1−α
k
(

1
p̂k

) α
1−α+n−k−1

(
1

γ

)
, k = 1, 2, .., n− 1

p̂n = 1

Inserted in the profit functions yields

πk =
λk (1− α)

1− αλk
=

1− α
k + (n− k) (p̂k)

α
1−α − α

, k = 1, 2, .., n

π̄k =
λ̄k (1− α)

1− αλ̄k
=

1− α

k
(

1
p̂k

) α
1−α

+ n− k − α
, k = 1, 2, .., n− 1.
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